The primary goal of organ-on-a-chip (aka tissue-on-a-chip) technology is to accurately mimic in vivo biology so that safer and more effective medicines can be discovered faster.
Lack of drug safety is the major factor contributing to the >90% overall failure rate during the drug development process and the liver is the most problematic organ with regards to toxicity issues.
This high drug attrition rate is primarily a result of the poor ability of animal studies to predict drug-induced liver injury (DILI), with 57% of human hepatoxicities being unobservable in rodents and 37% unobservable in non-rodents.
The primary goal of organ-on-a-chip (aka tissue-on-a-chip) technology is to accurately mimic in vivo biology so that safer and more effective medicines can be discovered faster. Lack of drug safety is the major factor contributing to the >90% overall failure rate during the drug development process and the liver is the most problematic organ with regards to toxicity issues. This high drug attrition rate is primarily a result of the poor ability of animal studies to predict drug-induced liver injury (DILI), with 57% of human hepatoxicities being unobservable in rodents and 37% unobservable in non-rodents. Animal drug testing is slow and resource intensive, often requiring numerous separate rounds of drug scale-up to supply animal studies throughout the lead optimization phase. With an average of 2,700 rodents and 300 non-rodents being used for each single successful drug registration (and keeping in mind that 9 out of 10 potential registrations fail), the animal usage, cost, and inefficiencies in the drug development process are staggering.