In 2016, the ‘FAIR Guiding Principles for scientific data management and stewardship’ were published in Scientific Data. The authors intended to provide guidelines to improve the findability, accessibility, interoperability, and reuse of digital assets.
Good data management is not a goal in itself, but rather is the key conduit leading to knowledge discovery and innovation, and to subsequent data and knowledge integration and reuse by the community after the data publication process. Unfortunately, the existing digital ecosystem surrounding scholarly data publication prevents us from extracting maximum benefit from our research investments (e.g., ref. 1). Partially in response to this, science funders, publishers and governmental agencies are beginning to require data management and stewardship plans for data generated in publicly funded experiments. Beyond proper collection, annotation, and archival, data stewardship includes the notion of 'long-term care' of valuable digital assets, with the goal that they should be discovered and re-used for downstream investigations, either alone, or in combination with newly generated data. The outcomes from good data management and stewardship, therefore, are high quality digital publications that facilitate and simplify this ongoing process of discovery, evaluation, and reuse in downstream studies. What constitutes 'good data management' is, however, largely undefined, and is generally left as a decision for the data or repository owner. Therefore, bringing some clarity around the goals and desiderata of good data management and stewardship, and defining simple guideposts to inform those who publish and/or preserve scholarly data, would be of great utility.
The elements of the FAIR Principles are related, but independent and separable. The Principles define characteristics that contemporary data resources, tools, vocabularies and infrastructures should exhibit to assist discovery and reuse by third-parties. By minimally defining each guiding principle, the barrier-to-entry for data producers, publishers and stewards who wish to make their data holdings FAIR is purposely maintained as low as possible. The Principles may be adhered to in any combination and incrementally, as data providers' publishing environments evolve to increasing degrees of 'FAIRness'. Moreover, the modularity of the Principles, and their distinction between data and metadata, explicitly support a wide range of special circumstances. One such example is highly sensitive or personally-identifiable data, where publication of rich metadata to facilitate discovery, including clear rules regarding the process for accessing the data, provides a high degree of 'FAIRness' even in the absence of FAIR publication of the data itself. A second example involves the publication of non-data research objects. Analytical workflows, for example, are a critical component of the scholarly ecosystem, and their formal publication is necessary to achieve both transparency and scientific reproducibility. The FAIR principles can equally be applied to these non-data assets, which need to be identified, described, discovered, and reused in much the same manner as data.
The ideas within the FAIR Guiding Principles reflect, combine, build upon and extend previous work by both the Concept Web Alliance (https://conceptweblog.wordpress.com/) partners, who focused on machine-actionability and harmonization of data structures and semantics, and by the scientific and scholarly organizations that developed the Joint Declaration of Data Citation Principles (JDDCP29), who focused on primary scholarly data being made citable, discoverable and available for reuse, so as to be capable of supporting more rigorous scholarship. An attempt to define the similarities and overlaps between the FAIR Principles and the JDDCP is provided at (https://www.force11.org/node/6062). The FAIR Principles are also complementary to the 'Data Seal of Approval' (DSA) (http://datasealofapproval.org/media/filer_public/2013/09/27/guidelines_2014-2015.pdf) in that they share the general aim to render data re-usable for users other than those who originally generated them. While the DSA focuses primarily on the responsibilities and conduct of data producers and repositories, FAIR focuses primarily on the data itself. Clearly, the broader community of stakeholders is coalescing around a set of common, dovetailed visions spanning all facets of the scholarly data publishing ecosystem.
The paper 'The FAIR Guiding Principles for scientific data management and stewardship' is the first formal publication of the FAIR principles. In short, the FAIR Data Principles propose that all scholarly output should be:
There is no "O" for "Open" in FAIR. Proponents of FAIR data often also stress that data should be as open as possible, access only being restricted where necessary.
Good data stewardship is the key to knowledge discovery and innovation. To generate value for a research community beyond the initial researchers, funding agencies are increasingly setting requirements for proper data stewardship of research data. Beyond proper collection, annotation, and archival, data stewardship includes the 'long-term care' of research data, with the goal that they can be found and re-used in downstream studies. To facilitate good data stewardship, a broad community of international stakeholders have developed the FAIR Data principles. The FAIR principles have been embraced by both the European Commission and the G20. The first formal publication of the FAIR Principles further describes the rationale behind them.
The paper 'The FAIR Guiding Principles for scientific datascientific data management and stewardship' is the first formal publication of the FAIR principles. In short, the FAIR Data Principles propose that all scholarly output should be:
Good data managementdata management is not a goal in itself, but rather is the key conduit leading to knowledge discovery and innovation, and to subsequent data and knowledge integration and reuse by the community after the data publication process. Unfortunately, the existing digital ecosystem surrounding scholarly data publication prevents us from extracting maximum benefit from our research investments (e.g., ref. 1). Partially in response to this, science funders, publishers and governmental agencies are beginning to require data management and stewardship plans for data generated in publicly funded experiments. Beyond proper collection, annotation, and archival, data stewardship includes the notion of 'long-term care' of valuable digital assets, with the goal that they should be discovered and re-used for downstream investigations, either alone, or in combination with newly generated data. The outcomes from good data management and stewardship, therefore, are high quality digital publications that facilitate and simplify this ongoing process of discovery, evaluation, and reuse in downstream studies. What constitutes 'good data management' is, however, largely undefined, and is generally left as a decision for the data or repository owner. Therefore, bringing some clarity around the goals and desiderata of good data management and stewardship, and defining simple guideposts to inform those who publish and/or preserve scholarly data, would be of great utility.
In 2016, the ‘FAIR Guiding Principles for scientific data management and stewardship’ were published in Scientific Data. The authors intended to provide guidelines to improve the findability, accessibility, interoperability, and reuse of digital assets. The principles emphasise machine-actionability (i.e., the capacity of computational systems to f
The ideas within the FAIR Guiding Principles reflect, combine, build upon and extend previous work by both the Concept Web Alliance (https://conceptweblog.wordpress.com/) partners, who focused on machine-actionability and harmonization of data structuresdata structures and semantics, and by the scientific and scholarly organizations that developed the Joint Declaration of Data Citation Principles (JDDCP29), who focused on primary scholarly data being made citable, discoverable and available for reuse, so as to be capable of supporting more rigorous scholarship. An attempt to define the similarities and overlaps between the FAIR Principles and the JDDCP is provided at (https://www.force11.org/node/6062). The FAIR Principles are also complementary to the 'Data Seal of Approval' (DSA) (http://datasealofapproval.org/media/filer_public/2013/09/27/guidelines_2014-2015.pdf) in that they share the general aim to render data re-usable for users other than those who originally generated them. While the DSA focuses primarily on the responsibilities and conduct of data producers and repositories, FAIR focuses primarily on the data itself. Clearly, the broader community of stakeholders is coalescing around a set of common, dovetailed visions spanning all facets of the scholarly data publishing ecosystem.
Good data stewardship is the key to knowledge discovery and innovation. To generate value for a research community beyond the initial researchers, funding agencies are increasingly setting requirements for proper data stewardship of research data. Beyond proper collection, annotation, and archival, data stewardship includes the 'long-term care' of research data, with the goal that they can be found and re-used in downstream studies. To facilitate good data stewardship, a broad community of international stakeholders have developed the FAIR Data principles. The FAIR principles have been embraced by both the European CommissionEuropean Commission and the G20. The first formal publication of the FAIR Principles further describes the rationale behind them.
In 2016, the ‘FAIR Guiding Principles for scientific data management and stewardship’ were published in Scientific Data. The authors intended to provide guidelines to improve the findability, accessibility, interoperability, and reuse of digital assets.
Good data management is not a goal in itself, but rather is the key conduit leading to knowledge discovery and innovation, and to subsequent data and knowledge integration and reuse by the community after the data publication process. Unfortunately, the existing digital ecosystem surrounding scholarly data publication prevents us from extracting maximum benefit from our research investments (e.g., ref. 1). Partially in response to this, science funders, publishers and governmental agencies are beginning to require data management and stewardship plans for data generated in publicly funded experiments. Beyond proper collection, annotation, and archival, data stewardship includes the notion of 'long-term care' of valuable digital assets, with the goal that they should be discovered and re-used for downstream investigations, either alone, or in combination with newly generated data. The outcomes from good data management and stewardship, therefore, are high quality digital publications that facilitate and simplify this ongoing process of discovery, evaluation, and reuse in downstream studies. What constitutes 'good data management' is, however, largely undefined, and is generally left as a decision for the data or repository owner. Therefore, bringing some clarity around the goals and desiderata of good data management and stewardship, and defining simple guideposts to inform those who publish and/or preserve scholarly data, would be of great utility.
The elements of the FAIR Principles are related, but independent and separable. The Principles define characteristics that contemporary data resources, tools, vocabularies and infrastructures should exhibit to assist discovery and reuse by third-parties. By minimally defining each guiding principle, the barrier-to-entry for data producers, publishers and stewards who wish to make their data holdings FAIR is purposely maintained as low as possible. The Principles may be adhered to in any combination and incrementally, as data providers' publishing environments evolve to increasing degrees of 'FAIRness'. Moreover, the modularity of the Principles, and their distinction between data and metadata, explicitly support a wide range of special circumstances. One such example is highly sensitive or personally-identifiable data, where publication of rich metadata to facilitate discovery, including clear rules regarding the process for accessing the data, provides a high degree of 'FAIRness' even in the absence of FAIR publication of the data itself. A second example involves the publication of non-data research objects. Analytical workflows, for example, are a critical component of the scholarly ecosystem, and their formal publication is necessary to achieve both transparency and scientific reproducibility. The FAIR principles can equally be applied to these non-data assets, which need to be identified, described, discovered, and reused in much the same manner as data.
The ideas within the FAIR Guiding Principles reflect, combine, build upon and extend previous work by both the Concept Web Alliance (https://conceptweblog.wordpress.com/) partners, who focused on machine-actionability and harmonization of data structures and semantics, and by the scientific and scholarly organizations that developed the Joint Declaration of Data Citation Principles (JDDCP29), who focused on primary scholarly data being made citable, discoverable and available for reuse, so as to be capable of supporting more rigorous scholarship. An attempt to define the similarities and overlaps between the FAIR Principles and the JDDCP is provided at (https://www.force11.org/node/6062). The FAIR Principles are also complementary to the 'Data Seal of Approval' (DSA) (http://datasealofapproval.org/media/filer_public/2013/09/27/guidelines_2014-2015.pdf) in that they share the general aim to render data re-usable for users other than those who originally generated them. While the DSA focuses primarily on the responsibilities and conduct of data producers and repositories, FAIR focuses primarily on the data itself. Clearly, the broader community of stakeholders is coalescing around a set of common, dovetailed visions spanning all facets of the scholarly data publishing ecosystem.
The paper 'The FAIR Guiding Principles for scientific data management and stewardship' is the first formal publication of the FAIR principles. In short, the FAIR Data Principles propose that all scholarly output should be:
There is no "O" for "Open" in FAIR. Proponents of FAIR data often also stress that data should be as open as possible, access only being restricted where necessary.
Good data stewardship is the key to knowledge discovery and innovation. To generate value for a research community beyond the initial researchers, funding agencies are increasingly setting requirements for proper data stewardship of research data. Beyond proper collection, annotation, and archival, data stewardship includes the 'long-term care' of research data, with the goal that they can be found and re-used in downstream studies. To facilitate good data stewardship, a broad community of international stakeholders have developed the FAIR Data principles. The FAIR principles have been embraced by both the European Commission and the G20. The first formal publication of the FAIR Principles further describes the rationale behind them.
In 2016, the ‘FAIR Guiding Principles for scientific data management and stewardship’ were published in Scientific Data. The authors intended to provide guidelines to improve the findability, accessibility, interoperability, and reuse of digital assets. The principles emphasise machine-actionability (i.e., the capacity of computational systems to f
2014
In 2016, the ‘FAIR Guiding Principles for scientific data management and stewardship’ were published in Scientific Data. The authors intended to provide guidelines to improve the findability, accessibility, interoperability, and reuse of digital assets.