Patent attributes
Computer systems, machine-implemented methods, and stored instructions are provided for minimizing an approximate global error in an artificial neural network that is configured to predict model outputs based at least in part on one or more model inputs. A model manager stores the artificial neural network model. The model manager may then minimize an approximate global error in the artificial neural network model at least in part by causing evaluation of a mixed integer linear program that determines weights between artificial neurons in the artificial neural network model. The mixed integer linear program accounts for piecewise linear activation functions for artificial neurons in the artificial neural network model. The mixed integer linear program comprises a functional expression of a difference between actual data and modeled data, and a set of one or more constraints that reference variables in the functional expression.