Patent attributes
Certain embodiments involve generating or optimizing a neural network for risk assessment. The neural network can be generated using a relationship between various predictor variables and an outcome (e.g., a condition's presence or absence). The neural network can be used to determine a relationship between each of the predictor variables and a risk indicator. The neural network can be optimized by iteratively adjusting the neural network such that a monotonic relationship exists between each of the predictor variables and the risk indicator. The optimized neural network can be used both for accurately determining risk indicators using predictor variables and determining adverse action codes for the predictor variables, which indicate an effect or an amount of impact that a given predictor variable has on the risk indicator. The neural network can be used to generate adverse action codes upon which consumer behavior can be modified to improve the risk indicator score.