Patent attributes
Systems and methods for segmenting an image using a convolutional neural network are described herein. A convolutional neural network (CNN) comprises an encoder-decoder architecture, and may comprise one or more Long Short Term Memory (LSTM) layers between the encoder and decoder layers. The LSTM layers provide temporal information in addition to the spatial information of the encoder-decoder layers. A subset of a sequence of images is input into the encoder layer of the CNN and a corresponding sequence of segmented images is output from the decoder layer. In some embodiments, the one or more LSTM layers may be combined in such a way that the CNN is predictive, providing predicted output of segmented images. Though the CNN provides multiple outputs, the CNN may be trained from single images or by generation of noisy ground truth datasets. Segmenting may be performed for object segmentation or free space segmentation.