Patent 10248742 was granted and assigned to University of North Dakota on April, 2019 by the United States Patent and Trademark Office.
Various embodiments for analyzing flight data using predictive models are described herein. In various embodiments, a quadratic least squares model is applied to a matrix of time-series flight parameter data for a flight, thereby deriving a mathematical signature for each flight parameter of each flight in a set of data including a plurality of sensor readings corresponding to time-series flight parameters of a plurality of flights. The derived mathematical signatures are aggregated into a dataset. A similarity between each pair of flights within the plurality of flights is measured by calculating a distance metric between the mathematical signatures of each pair of flights within the dataset, and the measured similarities are combined with the dataset. A machine-learning algorithm is applied to the dataset, thereby identifying, without predefined thresholds, clusters of outliers within the dataset by using a unified distance matrix.