Patent attributes
In some aspects, the present disclosure relates to neural language modeling. In one embodiment, a computer-implemented neural network includes a plurality of neural nodes, where each of the neural nodes has a plurality of input weights corresponding to a vector of real numbers. The neural network also includes an input neural node corresponding to a linguistic unit selected from an ordered list of a plurality of linguistic units, and an embedding layer with a plurality of embedding node partitions. Each embedding node partition includes one or more neural nodes. Each of the embedding node partitions corresponds to a position in the ordered list relative to a focus term, is configured to receive an input from an input node, and is configured to generate an output. The neural network also includes a classifier layer with a plurality of neural nodes, each configured to receive the embedding outputs from the embedding layer, and configured to generate an output corresponding to a probability that a particular linguistic unit is the focus term.