Patent attributes
In a datacenter setting, annotations or descriptions of relevant parts or subgraphs corresponding to components in the datacenter are predicted. Given a set of training data (library of subgraphs seen in the past labeled with a textual description explaining why were they considered relevant enough to be placed in the historical database), the recurrent neural network (RNN) learns how to combine the different textual annotations coming from each relevant region into a single annotation that describes the whole system. Accordingly, given a set of input or test data (datacenter state modeled a context graph that is not annotated), the system determines which regions of the input graph are more relevant, and for each of these regions, the RNN predicts an annotation even in a previously unseen or different datacenter infrastructure.