Patent attributes
A computer-implemented technique is described herein for identifying one or more content items that are relevant to an input linguistic item (e.g., an input query) using a deep-structured neural network, trained based on a corpus of click-through data. The input linguistic item has a collection of input tokens. The deep-structured neural network includes a first part that produces word embeddings associated with the respective input tokens, a second part that generates state vectors that capture context information associated with the input tokens, and a third part which distinguishes important parts of the input linguistic item from less important parts. The second part of the deep-structured neural network can be implemented as a recurrent neural network, such as a bi-directional neural network. The third part of the deep-structured neural network can generate a concept vector by forming a weighted sum of the state vectors.