Patent 10394872 was granted and assigned to Oracle on August, 2019 by the United States Patent and Trademark Office.
Herein is described an unsupervised learning method to discover topics and reduce the dimensionality of documents by designing and simulating a stochastic cellular automaton. A key formula that appears in many inference methods for LDA is used as the local update rule of the cellular automaton. Approximate counters may be used to represent counter values being tracked by the inference algorithms. Also, sparsity may be used to reduce the amount of computation needed for sampling a topic for particular words in the corpus being analyzed.