Patent attributes
An audio event detection system that subsamples input audio data using a series of recurrent neural networks to create data of a coarser time scale than the audio data. Data frames corresponding to the coarser time scale may then be upsampled to data frames that match the finer time scale of the original audio data frames. The resulting data frames are then scored with a classifier to determine a likelihood that the individual frames correspond to an audio event. Each frame is then weighted by its score and a composite weighted frame is created by summing the weighted frames and dividing by the cumulative score. The composite weighted frame is then scored by the classifier. The resulting score is taken as an overall score indicating a likelihood that the input audio data includes an audio event.