Patent attributes
Techniques are described related to turn-based reinforcement learning for dialog management. In various implementations, dialog states and corresponding responsive actions generated during a multi-turn human-to-computer dialog session may be obtained. A plurality of turn-level training instances may be generated, each including: a given dialog state of the plurality of dialog states at an outset of a given turn of the human-to-computer dialog session; and a given responsive action that was selected based on the given dialog state. One or more of the turn-level training instances may further include a turn-level feedback value that reflects on the given responsive action selected during the given turn. A reward value may be generated based on an outcome of the human-to-computer dialog session. The dialog management policy model may be trained based on turn-level feedback values of the turn-level training instance(s) and the reward value.