Patent attributes
A server device obtains historical transaction data regarding transactions involving a network service, obtains historical calendar data regarding static date information for a historical time period that corresponds with the historical transaction data, and processes the historical transaction data and historical calendar data to train a machine learning model using a gradient boosting machine learning technique to predict a normal transaction volume for a period of time and confidence bands associated with the normal transaction volume. The server device generates the normal transaction volume for the period of time and confidence bands using the machine learning model, obtains real-time data concerning a transaction volume during the period of time, detects a transaction volume anomaly based on comparing the real-time data and normal transaction volume and confidence bands, and sends an alert, based on the transaction volume anomaly, to cause a remote device to display the alert and perform an action.