Patent attributes
A system and method for machine-learning based atrial fibrillation detection are provided. A database is maintained that is operable to maintain a plurality of ECG features and annotated patterns of the features. At least one server is configured to: train a classifier based on the annotated patterns in the database; receive a representation of an ECG signal recorded by an ambulatory monitor recorder during a plurality of temporal windows; detect a plurality of the ECG features in at least some of the portions of the representation falling within each of the temporal windows; use the trained classifier to identify patterns of the ECG features within one or more of the portions of the ECG signal; for each of the portions, calculate a score indicative of whether the portion of the representation within that ECG signal is associated the patient experiencing atrial fibrillation; and take an action based on the score.