Patent attributes
A device for applying a constant magnetic field to a volume of interest (VOI) has been developed. At least one magnetic field source and a permeable yoke, which guides the magnetic flux generated by this magnetic field source into the volume of interest (VOI). The yoke is guided through at least one closed conductor loop, which can be switched to the superconducting state so that, in the superconducting state of the conductor loop, a change in the flux through the yoke effects a current counteracting this change along the conductor loop. It has been identified that, in this way, the stabilizer for the magnetic field can be spaced so far apart from the volume of interest (VOI) that the field distribution in this volume is virtually no longer influenced. At the same time, the quality of the stabilization is also improved, since the conductor loop is no longer exposed to the entire magnetic field prevailing in the volume of interest (VOI). The entire critical current that the conductor loop can carry is available as a control range for compensating for fluctuations in the flux. In comparison with the prior art, the invention first accepts the apparent disadvantage that, in general, additional means are required for switching the conductor loop back and forth between the superconducting state and the normal-conducting state. However, this disadvantage is more than compensated for.