Patent 10510009 was granted and assigned to States Title on December, 2019 by the United States Patent and Trademark Office.
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training and applying a machine learning model. One of the methods includes the actions of obtaining a collection of training data, the training data comprising collection of data points associated with a labeled set of real property parcels; training a machine learning model using the training data, the machine learning model being trained to generate a likelihood with respect to a parameter from input data associated with a specific parcel of real property, wherein training includes optimizing the model using a Markov chain optimization that seeks to minimize error in the model where the model is underpinned by one or more non-differentiable functions; receiving a plurality of data points associated with an input parcel of real property; and using the optimized model to generate a likelihood for the parameter for the input parcel of real property.