The present disclosure relates to a semiconductor light emitting device, comprising: a plurality of semiconductor layers that grows sequentially on a growth substrate, with the plurality of semiconductor layers including a first semiconductor layer having a first conductivity, a second semiconductor layer having a second conductivity different from the first conductivity, and an active layer interposed between the first semiconductor layer and the second semiconductor layer, generating a light with a first wavelength via electron-hole recombination; a first electrode, supplying either electrons or holes to the plurality of semiconductor layers; a second electrode, supplying, to the plurality of semiconductor layers, electrons if the holes are supplied by the first electrode, or holes if the electrons are supplied by the first electrode; a phosphor part provided over the first semiconductor layer on the side of the growth substrate, converting the light with the first wavelength generated in the active layer into a light of a second wavelength; and a non-conductive reflective film formed on the second semiconductor layer for reflecting the light from the active layer towards the first semiconductor layer on the side of the growth substrate, with the non-conductive reflective film having a distributed bragg reflector designed based on the light converted by the phosphor part.