Patent attributes
Described herein are systems and methods for augmenting neural speech synthesis networks with low-dimensional trainable speaker embeddings in order to generate speech from different voices from a single model. As a starting point for multi-speaker experiments, improved single-speaker model embodiments, which may be referred to generally as Deep Voice 2 embodiments, were developed, as well as a post-processing neural vocoder for Tacotron (a neural character-to-spectrogram model). New techniques for multi-speaker speech synthesis were performed for both Deep Voice 2 and Tacotron embodiments on two multi-speaker TTS datasets—showing that neural text-to-speech systems can learn hundreds of unique voices from twenty-five minutes of audio per speaker.