Patent attributes
Methods and systems that allow neural network systems to maintain or increase operational accuracy while being able to operate in various settings that may include predicting information. A set of training data is collected over each of at least two different settings. Each setting has a set of characteristics. Examples of setting characteristic types can be time, geographical location, and/or weather condition. Each set of training data is used to train a neural network resulting in a set of coefficients. For each setting, the setting characteristics are associated with the corresponding neural network having the resulting coefficients and neural network structure. A neural network, having the coefficients and neural network structure resulted after training using the training data collected over a setting, would yield optimal results when operated in/under the setting. A database management system can store information relating to the setting characteristics, neural network coefficients, and/or neural network structures.