Patent attributes
A method for point-to-point traffic prediction comprises: obtaining, from a plurality of computing devices, time-series locations of a plurality of vehicles respectively associated with the computing devices, wherein: the time-series locations form first trajectory data comprising corresponding trajectories at least passing from a first point O to a second point D within a first time interval; obtaining a traffic volume between O and D for a second time interval that is temporally after the first time interval; training one or more weights of a neural network model by inputting the first trajectory data and the traffic volume to the neural network model and using the obtained traffic volume as ground truth to obtain a trained neural network model; and inputting second trajectory data between O and D to the trained neural network model to predict a future traffic volume between O and D for the a future time interval.