Patent attributes
Some aspects of the present disclosure relate to computer processes for generating and training a generative machine learning model to estimate the true sizes of items and users of an electronic catalog and subsequently applied to determine fit recommendations, as well as confidence values for the fit recommendations, for how a particular item may fit a particular user. During training, the disclosed generative model can implement Bayesian statistical inference to calculate estimated true sizes of both items and users of an electronic catalog using both (1) a prior distribution of sizes for items and users and (2) a distribution based on obtained evidence regarding how items actually fit users. The resulting posterior distribution can be approximated using a proposal distribution used to generate the fit recommendations and associated confidence values.