Patent attributes
An approach to wakeword detection uses an explicit representation of non-wakeword speech in the form of subword (e.g., phonetic monophone) units that do not necessarily occur in the wakeword and that broadly represent general speech. These subword units are arranged in a “background” model, which at runtime essentially competes with the wakeword model such that a wakeword is less likely to be declare as occurring when the input matches that background model well. An HMM may be used with the model to locate possible occurrences of the wakeword. Features are determined from portions of the input corresponding to subword units of the wakeword detected using the HMM. A secondary classifier is then used to process the features to yield a decision of whether the wakeword occurred.