Patent attributes
Real-world data may not be sparse in a fixed basis, and current high-performance recovery algorithms are slow to converge, which limits compressive sensing (CS) to either non-real-time applications or scenarios where massive back-end computing is available. Presented herein are embodiments for improving CS by developing a new signal recovery framework that uses a deep convolutional neural network (CNN) to learn the inverse transformation from measurement signals. When trained on a set of representative images, the network learns both a representation for the signals and an inverse map approximating a greedy or convex recovery algorithm. Implementations on real data indicate that some embodiments closely approximate the solution produced by state-of-the-art CS recovery algorithms, yet are hundreds of times faster in run time.