Patent attributes
A microwave sensor includes a cloud of particles, e.g., Rubidium 87 atoms. A probe laser beam transitions ground-state particles in its path to an excited state. A set of one or more coupling laser beams causes excited particles to transition to a first Rydberg state so that particles in the intersection of the laser beams are in a dark superposition which is transparent to the probe laser beam so that a frequency spectrum of the probe laser beam shows a transmission peak at the laser frequency. A microwave lens focuses a microwave vector (e.g., a microwave signal) within the intersection, causing particles in the first Rydberg state to transition to a second Rydberg state, splitting the transmission peak into a pair of peaks. The intensity of the microwave vector can be calculated based on the frequency difference between the pair of peaks. The direction of the microwave vector can be determined from the location of the laser-beam intersection.