Patent attributes
Presented herein are embodiments of a non-autoregressive sequence-to-sequence model that converts text to an audio representation. Embodiment are fully convolutional, and a tested embodiment obtained about 46.7 times speed-up over a prior model at synthesis while maintaining comparable speech quality using a WaveNet vocoder. Interestingly, a tested embodiment also has fewer attention errors than the autoregressive model on challenging test sentences. In one or more embodiments, the first fully parallel neural text-to-speech system was built by applying the inverse autoregressive flow (IAF) as the parallel neural vocoder. System embodiments can synthesize speech from text through a single feed-forward pass. Also disclosed herein are embodiments of a novel approach to train the IAF from scratch as a generative model for raw waveform, which avoids the need for distillation from a separately trained WaveNet.