Patent attributes
The present invention provides a multi-resource scheduling method responding to uncertain demands in a cloud scheduler, where two computation formulas for fairness and efficiency are used as cost functions in an optimization problem. For some change sets with uncertain resource demands, a robust counterpart of an original non-linear optimization problem is computationally tractable. Therefore, the present invention models features of these sets with uncertain resource demands, i.e., establishes an ellipsoidal uncertainty model. In this model, each coefficient vector is put into a hyper-ellipsoidal space and used as a metric to measure an uncertainty degree. With the ellipsoidal uncertainty model, a non-linear optimization problem is solved and a resource allocation solution that can respond to dynamically changing demands can be obtained.