Provided is a liquid crystal device manufacturing method capable of accurately cleaving a substrate when it is cleaved from grooves formed therein by reducing the variation in depth of the grooves. A structure is fabricated. Drive substrates having terminal portions are formed by dividing a first substrate. A protection film is attached to a second substrate side of the structure. Grooves are formed in the second substrate near the terminal portions through the protection film. Counter substrates are formed by cleaving the second substrate from the grooves, the end surface of each counter substrate on the terminal portion side including a cleaved surface. Liquid crystal devices are fabricated in each of which a drive substrate and a counter substrate are bonded to each other by a seal, and a liquid crystal is filled in a gap between the drive substrate and the counter substrate and sealed by the seal.