Patent attributes
Herein, horizontally scalable techniques efficiently configure machine learning algorithms for optimal accuracy and without informed inputs. In an embodiment, for each particular hyperparameter, and for each epoch, a computer processes the particular hyperparameter. An epoch explores one hyperparameter based on hyperparameter tuples. A respective score is calculated from each tuple. The tuple contains a distinct combination of values, each of which is contained in a value range of a distinct hyperparameter. All values of a tuple that belong to the particular hyperparameter are distinct. All values of a tuple that belong to other hyperparameters are held constant. The value range of the particular hyperparameter is narrowed based on an intersection point of a first line based on the scores and a second line based on the scores. A machine learning algorithm is optimally configured from repeatedly narrowed value ranges of hyperparameters. The configured algorithm is invoked to obtain a result.