An intelligent computer platform to introduce adversarial training to natural language processing (NLP). An initial training set is modified with synthetic training data to create an adversarial training set. The modification includes use of natural language understanding (NLU) to parse the initial training set into components and identify component categories. As input is presented, a classifier evaluates the input and leverages the adversarial training set to identify the intent of the input. An identified classification model generates accurate and reflective response data based on the received input.