Patent attributes
This disclosure relates to techniques for generating physically accurate auralization of sound propagation in complex environments, while accounting for important wave effects, such as sound absorption, sound scattering, and airborne sound insulation between rooms. According to some embodiments, techniques may be utilized to determine more accurate, e.g., “acoustically-effective” room volumes that account for open windows, open doors, acoustic dead space, and the like. According to other embodiments disclosed herein, techniques may be utilized to perform optimized hybrid acoustical ray tracing, including grouping coherent rays by processing core. According to other embodiments disclosed herein, techniques may be utilized to translate simulated ray tracing results into natural-sounding reverberations by deriving and resampling spatial-time-frequency energy probability density functions that more accurately account for the laws of physics and then converting this data into a spatial impulse response function, which may then be used for realistic 3D audio reproduction, e.g., via headphones or loudspeakers.