Patent attributes
Systems and methods for early anomaly prediction on multi-variate time series data are provided. The method includes identifying a user labeled abnormal time period that includes at least one anomaly event. The method also includes determining a multi-variate time series segment of multivariate time series data that occurs before the user labeled abnormal time period, and treating, by a processor device, the multi-variate time series segment to include precursor symptoms of the at least one anomaly event. The method includes determining instance sections from the multi-variate time series segment and determining at least one precursor feature vector associated with the at least one anomaly event for at least one of the instance sections based on applying long short-term memory (LSTM). The method further includes dispatching predictive maintenance based on the at least one precursor feature vector.