Patent attributes
The present disclosure relates to an image composite system that employs a generative adversarial network to generate realistic composite images. For example, in one or more embodiments, the image composite system trains a geometric prediction neural network using an adversarial discrimination neural network to learn warp parameters that provide correct geometric alignment of foreground objects with respect to a background image. Once trained, the determined warp parameters provide realistic geometric corrections to foreground objects such that the warped foreground objects appear to blend into background images naturally when composited together.