Patent attributes
A system, method, and computer-accessible medium for using medical imaging data to screen for a cystic lesion(s) can include, for example, receiving first imaging information for an organ(s) of a one patient(s), generating second imaging information by performing a segmentation operation on the first imaging information to identify a plurality of tissue types, including a tissue type(s) indicative of the cystic lesion(s), identifying the cystic lesion(s) in the second imaging information, and applying a first classifier and a second classifier to the cystic lesion(s) to classify the cystic lesion(s) into one or more of a plurality of cystic lesion types. The first classifier can be a Random Forest classifier and the second classifier can be a convolutional neural network classifier. The convolutional neural network can include at least 6 convolutional layers, where the at least 6 convolutional layers can include a max-pooling layer(s), a dropout layer(s), and fully-connected layer(s).