Patent attributes
A quantum computer and methods of operating the quantum computer, such that the quantum computer is enabled to fully simulate molecular chemistry, are described. The circuit depth of the quantum computer is reduced by at least an order of magnitude, as compared to conventional quantum computing methods. Parallelized qubit or fermionic swap networks are employed to render the non-local terms of the second quantized Hamiltonian, as local on consecutive qubits of the computer. Thus, non-local quantum dynamics are rendered local. By localizing the non-local interactions, the quantum computations may be significantly parallelized and a single template circuit, simulating the time-evolution operator for 4-qubit interactions, may be applied to the localized groupings of four qubits. In addition to chemistry, the quantum computer and the methods of operating the quantum computer may be employed to localize any many-body interaction, while reducing the required circuit depth, via parallelizations of the localized computations.