Patent attributes
Methods, systems and computer program products for updating a word embedding model are provided. Aspects include receiving a first data set comprising a relational database having a plurality of words. Aspects also include generating a word embedding model comprising a plurality of word vectors by training a neural network using unsupervised machine learning based on the first data set. Each word vector of the plurality of word vector corresponds to a unique word of the plurality of words. Aspects also include storing the plurality of word vectors and a representation of a hidden layer of the neural network. Aspects also include receiving a second data set comprising data that has been added to the relational database. Aspects also include updating the word embedding model based on the second data set and the stored representation of the hidden layer of the neural network.