Patent attributes
A system that uses a client's behavioral biometrics—mouse dynamics, keystrokes, and mouse click patterns—to create a Machine Learning (ML) based customized security model for each client/user to secure website log-ins. The ML model can differentiate the user of interest from an impersonator—human or non-human (robot). The model collects relevant behavioral biometric data from the client when a new account is created by the client/user on a website or when the client initially logs-in to the website. The collected biometric data are used to train an ensemble of ML-based classifiers—a Multilayer Perceptron (MLP) classifier, a Support Vector Machine (SVM) classifier, and an Adaptive Boosting (AdaBoost) classifier—in the model. The trained versions of these classifiers are polled to give an optimal prediction in real-time (while the user is logging in). As a result, real-time fraud detection can be accomplished without impacting the log-in performance of the website.