Patent attributes
A method for generating forecast predictions that indicate an event horizon of an entity or remaining useful life of a consumable using machine learning techniques is provided. Using a server computer system, feature data comprising features vectors that represent a set of signal data over a range of time is stored. Condition data comprising conditions occurring on the entity at particular moments in time is stored. Label data that comprises a plurality of time values that each indicate a difference in time between one condition and another condition is stored. A training dataset is created by combining the feature data, the condition data, and the label data into a single dataset. The training dataset is partitioned by condition. A machine learning model is trained on each target condition training dataset. The trained machine learning models are used to generate forecast values that each indicate an amount of time to an occurrence of a target condition associated with an entity.