Patent attributes
Disclosed are a multi-task training technique and resulting model for detecting distracted driving. In one embodiment, a method is disclosed comprising inputting a plurality of labeled examples into a multi-task network, the multi-task network comprising: a backbone network, the backbone network generating one or more feature vectors corresponding to each of the labeled examples, and a plurality of prediction heads coupled to the backbone network; minimizing a joint loss based on outputs of the plurality of prediction heads, the minimizing the joint loss causing a change in parameters of the backbone network; and storing a distraction classification model after minimizing the joint loss, the distraction classification model comprising the parameters of the backbone network and parameters of at least one of the prediction heads.