Patent attributes
A method identifies and removes bias from a machine learning model. A user/computer inputs a plurality of input training data into a machine learning system to generate an output of labeled output data. The user/computer evaluates the labeled output data according to a consistency metric to associate the labeled output data with a corresponding consistency assessment. The user/computer selects each labeled output data having a consistency assessment indicating a consistency assessment that is greater than a predetermined threshold to form a labeled output data subset, and then creates additional labeling for the labeled output data subset. The user/computer utilizes the additional labeling to distinguish each labeled training data from labeled output data subset as being mislabeled and biased, and then adjusts the learning machine based on the labeled output data subset being mislabeled and biased.