Patent attributes
Some embodiments may perform operations of a process that includes obtaining a natural language text document and use a machine learning model to generate a set of attributes based on a set of machine-learning-model-generated classifications in the document. The process may include performing hierarchical data extraction operations to populate the attributes, where different machine learning models may be used in sequence. The process may include using a pre-trained Bidirectional Encoder Representations from Transformers (BERT) model augmented with a pooling operation to determine a BERT output via a multi-channel transformer model to generate vectors on a per-sentence level or other per-text-section level. The process may include using a finer-grain model to extract quantitative or categorical values of interest, where the context of the per-sentence level may be retained for the finer-grain model.