Patent attributes
A model training method and an apparatus thereof are provided. The method includes reading a portion of sample data in a sample full set to form a sample subset; mapping a model parameter related to the portion of sample data from a first feature component for the sample full set to a second feature component for the sample subset; and training a model based on the portion of sample data having the second feature component. A size of a copy of model parameters(s) on a sample computer can be reduced after mapping, thus greatly reducing an amount of training data and minimizing the occupancy of memory of the computer. Memory of a sample computer is used to place vectors, and store and load samples, thereby performing machine learning and training large-scale models with relatively low resource overhead under a condition of minimizing the loss of efficiency.