Patent attributes
Ground truth data may be too sparse to supervise training of a machine-learned (ML) model enough to achieve an ML model with sufficient accuracy/recall. For example, in some cases, ground truth data may only be available for every third, tenth, or hundredth frame of raw data. Training an ML model to detect a velocity of an object when ground truth data for training is sparse may comprise training the ML model to predict a future position of the object based at least in part on image, radar, and/or lidar data (e.g., for which no ground truth may be available). The ML model may be altered based at least in part on a difference between ground truth data associated with a future time and the future position.