Hybrid natural language understanding (NLU) systems and methods are provided that capitalize on the strengths of the rule-based models and the statistical models, lowering the cost of development and increasing the speed of construction, without sacrificing control and accuracy. Two models are used for intent recognition, one statistical and one rule-based. Both models define the same set of intents, but the rule-based model is devoid of any grammars or patterns initially. Each model may or may not be hierarchical in that it may be composed of a set of specialized models that are in a tree form or it may be just a singular model.