Patent attributes
A method and system of training a machine learning neural network (MLNN) in monitoring anatomical positioning causing bodily pressure ulcers (BPUs). The method comprises receiving, in a first input layer of the MLNN, from a millimeter wave (mmWave) radar sensing device, mmWave radar point cloud data representing anatomical positions of the medical patient in association with corresponding durations; receiving, in at least a second layer of the MLNN, attendant attribute data for the durations, the first and the at least a second input layers being interconnected with an output layer of the MLNN via at least one intermediate layer; training a MLNN classifier in accordance with a supervised classification that establishes a correlation between a likelihood of formation of BPUs with the mmWave point cloud data and attendant attribute data; and adjusting the initial matrix of weights by backpropagation to increase correlation with the likelihood of formation of BPUs as generated at the output layer.