Patent attributes
The present disclosure provides a probabilistic decision engine for autonomous vehicles. Briefly described, one embodiment comprises taking a network connection matrix (based on maps and graph theory) and a cost matrix (with entries of the cost's mean values and probability distributions) as input and generates the probability distribution of optimal routes as output. The disclosed probabilistic decision engine comprises a stochastic network standardization module, a stochastic network decomposition module and a probabilistic optimization kernel. A deterministic network reduction method is first used to derive a standard reduced network, augmented by the stochastic network reduction. The standard network is then decomposed into a series of stochastic subnetworks by using the convolution, probability density function (PDF) shifting, and PDF reshaping techniques. A pure-analytical probabilistic solver is finally used to solve the stochastic optimization problem.