Patent attributes
An intelligent data and knowledge-driven method for modulation recognition includes the following steps: collecting spectrum data; constructing corresponding attribute vector labels for different modulation schemes; constructing and pre-training an attribute learning model based on the attribute vector labels for different modulation schemes; constructing and pre-training a visual model for modulation recognition; constructing a feature space transformation model, and constructing an intelligent data and knowledge-driven model for modulation recognition based on the attribute learning model and the visual model; transferring parameters of the pre-trained visual model and the pre-trained attribute learning model and retraining the transformation model; and determining whether training on a network is completed and outputting a classification result. The intelligent data and knowledge-driven method for modulation recognition significantly improves the recognition accuracy at low SNRs and reduces the confusion between higher-order modulation schemes.