Patent attributes
Apparatuses, methods, and systems are provided for making sequential recommendations using transition regularized non-negative matrix factorization. A non-application specific collaborative filtering based personalized recommender system can recommend a next logical item from a series of related items to a user. The recommender system can recommend a next desirable or series of next desirable new items to the user based on the historical sequence of all user-item preferences and a user's most recent interaction with an item. An asymmetric item-to-item transition matrix can capture aggregate sequential user-item interactions to design a loss function for matrix factorization that incorporates the transition information during decomposition into low-rank factor matrices.