Patent attributes
A method of sparse intent clustering is provided. The method comprises identifying features in a number of electronic user reports created by a user and contained in a database, wherein the features include a title and description. The features of each user report are encoded into a binary vector. The binary vector for each user report is fed into an autoencoder neural network that creates a N-dimensional vector representing the user report. The float vectors representing the user reports are projected into a N-dimensional space. The float vectors are clustered according to cosine similarities, wherein each vector cluster represents an intent of the user in creating the reports. The intent of each vector cluster is then labeled.