Detecting fraudulent activity can be a complex, manual process. In this paper, we adapt statistical properties of count data in a novel algorithm to uncover records exhibiting high risk for fraud. Our method identifies shelves, partitioning data under the counts using a Student's t-distribution. We apply this methodology on a univariate dataset including cumulative results from phone calls to a customer service center. Additionally, we extend this technique to multivariate data, illustrating that the same method is applicable to both univariate and multivariate data.