Patent attributes
Embodiments of this application disclose a classification model training method, a classification method, a device, and a medium. An initial classification model is first trained by using a first sample set including a large quantity of first samples, to obtain a pre-trained model, each first sample including a social text and an emoticon label corresponding to the social text; and the pre-trained model is then trained by using a second sample set including a small quantity of second samples, to obtain a social text sentiment classification model that uses a social text as an input and use a sentiment class probability distribution corresponding to the social text as an output. In this method, the model is trained by combining a large quantity of weakly supervised samples with a small quantity of supervised samples, to ensure that the model obtained through training has better model performance without increasing manually labeled samples.